
PO11Q - Introduction to Quantitative Political Analysis I:

Worksheet Week 5

Dr Florian Reiche
F.Reiche@warwick.ac.uk

1 | R & RStudio – Installation

Today we start working with R and the first step is to install the program. Please follow these

instructions:

1. Go to https://cran.r-project.org/mirrors.html and select a server from

which you want to download R. It is convention to do this from the server which is nearest

to you. Follow on-screen instructions and install the program.

2. Go to https://rstudio.com/products/rstudio/download/ and download

RStudio Desktop which is free. Install the program.

3. Now open RStudio - you do not need to open R itself, as we will be operating it through

RStudio.

2 | R - Getting Started

In this worksheet and also in all other presentations and documents I use on this module, I am

using two different fonts:

• Font for plain text

• A typewriter font for R functions, values, etc.

I am also regularly including“screenshots”of operations in R with their output. Whenever you see

these, please replicate them on your own computer. To start, let’s have a look at RStudio itself.

When you open the programme, you are presented with the following screen:

mailto:F.Reiche@warwick.ac.uk
https://cran.r-project.org/mirrors.html
https://rstudio.com/products/rstudio/download/

Figure 1: RStudio

It has – for now – three components to it. On the left hand-side you see the so-called Console

into which you can enter the commands, and in which also most of the results will be displayed.

On the right hands side, you see the Workspace which consists of an upper and a lower window.

The upper window has three tabs in it. The tab Environment will provide you with a list of all

the data sets you have loaded into R, and also of the objects and values you create (more on that

later). Under the History tab, you find a history (I know, who would have thought it) of all the

commands you have used. This can be very useful to retrace your steps. In the Connections

tab you can connect to online sources. We will not use this tab.

In the lower window, you have five tabs. Under Files you find the file structure of your computer.

Once you have set a working directory (more on that in a moment), you can also view the files in

your working dorectory here which gives you a good overview of the files you need to refer to for

a particular project. The Plots tab will display the graphs we will be producing. Packages

form the heart and soul of R and they make the program as powerful as it is (again, more on

that later). RStudio also has a Help function, which is rarely very illuminating. I usually search

for stuff online on“stackexchange”, as there is a large community of R users out there who share

their knowledge and solutions to problems. We won’t use the last tab Viewer.

Page 2 of 18

3 | RScript

If you read the previous section carefully, you will have noticed that I wrote that you can enter the

commands”in the Console. You can, but you shouldn’t. What you should be using instead is an

RScript. An RScript is a list of commands you use for a project (an essay, your dissertation,

an article) to calculate quantities of interest, such as descriptive statistics in the form of mean,

median and mode, and produce graphs.

One of the foundations of scientific research is“reproducibility”“, or”replicability”. This means that

“sufficient information exists with which to understand, evaluate, and build upon a prior work if a

third party could replicate the results without any additional information from the author.” King

(1995, 444, emphasis removed) This principle applies in academia more generally, because only if

you understand what a person has done before you, you can pick their work up whether they left

it, and push the boundaries of knowledge further. But a bit closer to home, it is also relevant for

conducting quantitative research in assessments. We require you to submit an RScript (or a“do

file” if you use Stata) now together with your actual essay. This is not only to check what you

have done; data preparation is often the most time-consuming part (as you will soon discover),

and this is a way to gain recognition for this work. So it is actually to your advantage, and not a

mere plagiarism check.

The creation of an RScript will allow you to open the raw data, and by running the script, to bring

it to exactly where you left off. This saves you saving data sets which can take up a lot of work.

If you back the script up properly, you also have an insurance against losing all your work a day

before the assessment is due.

To create an RScript, click File → New File → RScript. A fourth window opens, and your

screen will now look something like this:

Page 3 of 18

Figure 2: The RScript Window

You can now write your commands in the RScript, where a new line (for now) means a new

command. If you want to execute a command, put the cursor on the line the command is on and

press“command”/“enter” simultaneoulsy on a Mac and“Ctrl”/“Enter”on Windows.

Figure 3 shows the start of the RScript for this worksheet. I prefer a dark background, it’s easier

on the eyes, especially when you work with R for long periods. You can change the settings in:

Tools → Global Options → Appearance → Vibrant Ink.

Page 4 of 18

Figure 3: Example of an RScript

If you precede a line with #, you can write annotations to yourself, for example explaining what

you do with a particular command. More on this in the next sub-section. ## RScript Structure

Well, I am German, and I like things neat and tidy, so I feel almost compelled to discuss how to

properly organise an RScript. But apart from genetical dispositions, a well-organised RScript

is also very much in the spirit of reproducibility. It simply makes sense to structure an RScript in

such a way that another researcher is able to easily read and understand it.

First of all, which commands to include? If you introduce me to your current girlfriend or boyfriend,

I have no interest in learning about all your past relationships; they have not worked out. In a

similar fashion, nobody wants to read through lines of code that are irrelvant. So you will only

include in the RScript those commands which produce the output you actually include in the

essay or article.

I stated above that if you precede a line with #, you can write annotations to yourself. This is

also a useful way to structure an RScript, for example into exercise numbers, sections of an

essay /article, or different stages of data preparation (which we will be doing in due course).

Page 5 of 18

4 | First Steps in R

But enough of the preliminary talk, let’s get started in R. In principle, you can think of R as a

massive and powerful calculator. So I will use it as such to start of with. If you want to know

what the sum of 5 and 3 is, you type1

5+3

and execute the line as previously explained. In everything that is to follow, commands will be

shown in boxes with the output underneath preceded by a hash tag. So, including result, the

calculation would look like this:

5+3

[1] 8

where the [1] indicates that the 8 is the first component of the result. In this case, we only have

one component, so it’s superflous really, but we will soon encounter situations in which results

can have a number of different items.

A fundamental component of R is objects. You can define an object by way of a reversed arrow,

and you can assign values, characters, or functions to them. If we want to assign the sum of 5

and 3 to an object called result, for example, we call2

r e s u l t <− 5+3

If we now call the object, R will return its value, 8.

r e s u l t

[1] 8

1Do not copy and paste from the pdf into your RScript. This will not work, as the characters do not get
pasted accurately.

2To“call”means to execute a command.

Page 6 of 18

5 | The Working Directory

It is imperative that you create a suitable filing system to organise the materials for all of your

modules. At the very least you should have a folder called“University”or similar, in which you

have a sub-folder for each module you take.

In those modules in which you are working with R, you need to extend this system a little. I have

created a schematic of what I have in mind in Figure 4.

Figure 4: Folder Structure

You see that there is a sub-folder for each week of the module (I have only done three for illustrative

purposes), and that each of these folders is divided into lecture and seminar in turn. Into these

you can place the lecture and seminar materials, respectively. Create this system now for PO11Q.

R works with so-called Working Directories. You can think of these as drawers from which

R takes everything it needs to conduct the analysis (such as the data set), and into which it

puts everything it produces (such as graph plots). As this will be an R-specific drawer within the

seminar, create yet another sub-folder in your seminar folder, and call it something suitable, such

as“PO11Q Seminar Week 1”. Do NOT call this“Working Directory”, as you will have many of

those, rendering this name completely meaningless. Save the file“EU.xlsx” (available on Moodle)

into it.

Please set this structure up now. If I find you using a random folder

on your desktop named“working directory” in the coming weeks, I

am going to implode! I mean it.

Page 7 of 18

Now we need to tell R to use this folder. If you know the file structure of your computer you can

simply use the setwd() command, and enter the path. Here is an example from my computer:

setwd (”∼/Warwick/Modules /PO11Q/Seminars /Week 5/R Week 5 ”)

If you don’t know the file structure of your computer, then you can click Session → Set Working

Directory → Choose Directory.

6 | R Packages

It would be difficult to overstate the importance of packages in R. The program has a number

of “base” functions which enable the user to do many different basic things, but packages are

extensions that allow you to do pretty much anything and everything with this software - this is

one of the reasons why I love it so much. The first package we need to use will enable us to

load an Excel sheet into R. It is called readxl. You can install any package with the command

install.packages() where the package name goes, wrapped in quotation marks, into the

brackets:

i n s t a l l . packages (”r e a d x l ”)

We can then load this package into our library with the library() command.

l i b r a r y (r e a d x l)

Once you close R at the end of a session, the library will be reset and you have to load packages

from scratch (no need to install them again, though).

7 | Opening your Data Set

We are now ready to open a data set in R - where it is called a“data frame”. For this, we create

a new object EU, and ask R to read“Sheet 1””of the Excel file“EU.xlsx”. Data are taken from

European Comission (n.d.).

EU <− r ead e x c e l (”EU. x l s x ” , s h e e t=”Sheet1 ”)

We can now use our data in R!

8 | Viewing the Data

Unless you have been cheeky and opened the file in Excel to have a look, you have no idea yet,

what the data look like. So it’s a good idea to view the data frame before doing anything with it.

Page 8 of 18

You can use the View() command to see the data frame:

View (EU)

If you only want to see the first 6 observations of each variable, use the head() command:

head (EU)

A t i b b l e : 6 x 5

count r y pop18 a c c e s s a r ea GDP 2015

<chr> <dbl> <dbl> <dbl> <dbl>

1 Belgium 11413058 1951 30280 4 .66 e11

2 Bu l g a r i a 7050034 2007 108560 1 .22 e11

3 Czech ia 10610055 2004 77230 3 .19 e11

4 Denmark 5781190 1973 42430 2 .46 e11

5 Germany 82850000 1951 348540 3 .60 e12

6 Es ton i a 1319133 2004 42390 3 .51 e10

If you simply want to know the variable names in the data frame, type:

names (EU)

[1] ”coun t r y ” ”pop18 ” ”a c c e s s ” ”a r ea ” ”GDP 2015”

The next one is a very important command, because it reveals not only the variable names and

their first few observations, but also the nature of each variable (numerical, character, etc.). It is

the str() command, where“str” stands for structure:

s t r (EU)

t i b b l e [28 x 5] (S3 : t b l d f / t b l / data . f rame)

$ coun t r y : ch r [1 : 2 8] ”Belgium ” ”Bu l g a r i a ” ”Czech ia ” ”Denmark ” . . .

$ pop18 : num [1 : 2 8] 11413058 7050034 10610055 5781190 82850000 . . .

$ a c c e s s : num [1 : 2 8] 1951 2007 2004 1973 1951 . . .

$ a r ea : num [1 : 2 8] 30280 108560 77230 42430 348540 . . .

$ GDP 2015 : num [1 : 2 8] 4 .66 e+11 1 .22 e+11 3 .19 e+11 2 .46 e+11 3 .60 e+12 . . .

You can see that R has recognised most variables as numerical, one is displayed as a character

variable. This is appropriate for some variables, such as pop18, but not for the ordinal variable

access which is ordinal. We need to recode it, and all other variables we are unhappy with.

Page 9 of 18

9 | Variable Types in R

R distinguishes between a number of different variable types and here is a braod overview of them.

This will help you in deciding which descriptive statistics to calculate, or into which variable type

you need to recode (next step) to achieve what you want. There are two general types:

1. numeric – numbers

2. character (also called string) – letters

Within numeric we can distinguish between the following:

• factor - nominal

• ordered factor - ordinal

• integer - numeric, but only“whole”numbers (discrete)

• numeric - any number (interval or ratio)

Numerical variables are already in the data set, we have to attend to nominal and ordinal variables.

9.1 Nominal Variables

In terms of the variable types we encountered in the lecture this week, the country name is a

nominal variable. So we need to tell R to turn this into a factor variable. We do this as follows:

EU$ coun t r y = f a c t o r (EU$ coun t r y)

9.1.1 Ordinal Variables

As mentioned above, the variable access should be ordinal, and therefore has to be turned into

an ordered factor. The command which follows is almost identical to producing a factor variable,

only that we add the option ordered = TRUE at the end:

EU$ a c c e s s f a c = f a c t o r (EU$ acce s s , o r d e r ed = TRUE)

If you are familiar with European Studies, you will know that each accession wave has got a

particular name. The 1973 enlargement, for example, is called the“First Enlargement”, the 1981

wave the Mediterranean Enlargement, and so forth. Let us create a new variable which uses these

names instead of the years.

This process is a little more involved, and requires a new package to be installed and loaded:

dplyr. This package is part of the so-called tidyverse which is a suite of packages designed

to make working with R simpler and commands shorter. You can install all of them by calling

install.packages("tidyverse"). We then load the tidyverse with:

Page 10 of 18

l i b r a r y (t i d y v e r s e)

The command which follows takes a little explaining. We start by stating the dataframe we wish to

work with, EU. The symbol which follows, %>%, reads as“and then”, and is called (yes seriously) a

pipe. So we take the data frame EU“and then”carry out a function called mutate. This function

in turn defines the new variable wave by recoding the variable access_fac. The command

then specifies all categories of the“old”variable access_fac and what their respective values

in the“new”variable wave are going to be. The categories in each are set in quotation marks, as

they are factor / character categories. The last step is then to assign this newly created variable

wave to our data frame EU.

EU <− EU %>%

mutate (wave = recode (a c c e s s fac , ' 1951 '=”Founding ” ,

' 1973 '= ”F i r s t ” ,

' 1981 '= ”Med i t e r r anean ” ,

' 1986 ' = ”Med i t e r r anean ” ,

' 1995 ' = ”Cold War ” ,

' 2004 ' = ”Eas t e rn ” ,

' 2007 ' = ”Eas t e rn ” ,

' 2013 ' = ”Balkans ”))

Note that because the original variable access_fac was already an ordered factor, R (or the

mutate function to be precise) also returns wave as an ordered factor. Had we not done this,

wave would have been an unorderd factor (aka nominal variable). You can specify in an option

to the mutate function whether you want the factor to be ordered or not:

EU <− EU %>%

mutate (wave = recode (a c c e s s fac , ' 1951 '=”Founding ” ,

' 1973 '= ”F i r s t ” ,

' 1981 '= ”Med i t e r r anean ” ,

' 1986 ' = ”Med i t e r r anean ” ,

' 1995 ' = ”Cold War ” ,

' 2004 ' = ”Eas t e rn ” ,

' 2007 ' = ”Eas t e rn ” ,

' 2013 ' = ”Balkans ”) , o r d e r ed=TRUE)

An alternative procedure, producing exactly the same result is to use the cut() on the access

variable which literally cuts up a variable into chunks at the points we specify. This only works

on numerical variables which is OK in the present case, as we didn’t change access, and it

is still numerical. This also shows you the benefit of always creating a new variable instead of

overwriting the original: there is no“back”button in R, if you mess up, you will have the pleasure

to start from the beginning.

As for the command, we will use a new data frame for this, called EU1 so as not to overwrite the

Page 11 of 18

wave variable we have just created (you could also give this variable a new name, but I want to

keep the following code analogous to the previous chunk).Again, we use the mutate function,

cut the original variable up at the accession years, and specify the levels, this time as labels.

Labels denominate the output, whilst levels are input. A factor only knows levels which is

set by the label function. Here we have already created the levels with the cut() function,

and assign labels to these in the second step.

EU1 <− EU %>%

mutate (wave=cut (acce s s ,

b r e ak s=c (1950 , 1951 , 1973 , 1986 , 1995 , 2007 , 2013) ,

l a b e l s=c (”Founding ” , ”F i r s t ” ,

”Med i t e r r anean ” ,

”Cold War ” ,

”Ea s t e rn ” ,

”Ba lkans ”)))

l e v e l s (EU1$wave)

[1] ”Founding ” ”F i r s t ” ”Med i t e r r anean ” ”Cold War ”

[5] ”Ea s t e rn ” ”Ba lkans ”

10 | Binary Dummy

Very often in political science we have yes/no scenarios, such as democracy yes or no, civil war,

yes or no, etc. To analyse these scenarios, we can create so-called “dummy variables”. In the

present example, let’s specify for each country whether it has been a founding member of the EU.

It is a factor variable and so we do this exactly the same way as our initial recoding of the wave

variable above:

EU2 <− EU %>%

mutate (f ound ing = recode (a c c e s s fac , ' 1951 '=”Yes ” ,

' 1973 ' = ”No” ,

' 1981 ' = ”No” ,

' 1986 ' = ”No” ,

' 1995 ' = ”No” ,

' 2004 ' = ”No” ,

' 2007 ' = ”No” ,

' 2013 ' = ”No”))

s t r (EU2$ found ing)

Ord . f a c t o r w/ 2 l e v e l s ”Yes ”<”No ”: 1 2 2 2 1 2 2 2 2 1 . . .

Page 12 of 18

11 | Sub-Setting Data

When we start analysing data, we rarely need all data at the same time. We might not need some

variables, at all, for example, or we only want to work with certain observations, such as those

countries in the“founding”wave. In these cases, we can subset the data. I will show you some

examples of subsetting now, and will be working with the data frame EU2 we created last.

11.1 By Variable

If you are sure you won’t need a variable (remember, there is no back button), you can simply

drop (i.e. delete) it. Let’s do this with the area variable:

EU2$ a rea <− NULL

If we are dropping multiple variables, we can either perform this operation each time, or use

another command which allows us to operate with multiple variables at the same time. The

select() command comes from the tidyverse package and specifies which variables we

wish to keep:

EU pop <− s e l e c t (EU2 , count ry , pop18 , a c c e s s fac , f ound ing)

We can, however, use the same command and tell R which variables to drop by adding a minus

sign in fron of the variables we want to delete. The following command produces exactly the same

result as the one before:

EU pop1 <− s e l e c t (EU2 , −acce s s , −GDP 2015)

Page 13 of 18

11.2 By Observation

Instead of dropping and keeping variables, we can do the same thing to individual observations.

Here, we use the slice() command (like a cake) and specify which slices we want to drop or

keep. For example to drop the Benelux countries we would delete observations 1, 16 and 19:

EU nobene lux <− s l i c e (EU2 , −1, −16, −19)

Alternatively, if we were only interested in Benelux countries we would subset to only those

observations:

EU bene l ux <− s l i c e (EU2 , 1 , 16 , 19)

11.3 Keep if a variable has a certain value, e.g. ‘pop18’ larger than
10,000,000

One of the most useful commands is filter(), as it allows us to keep all observations for which

the value of a variable is of a particular number. For example if we wanted to conduct an analysis

with all countries which have a population in excess of 10 million we could subset by:

EU pop l a r g e <− f i l t e r (EU2 , pop18 > 10000000)

Here is a list of some operators you can use for this purpose:

Operator Description
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== exactly equal to
!= not equal to
!x Not x
x | y x OR y
x & y x AND y

Table 1: Operators in R

Page 14 of 18

12 | Ordering Data

The data set in its original state is purposely not ordered by any criterion, such as alphabetical

order of countries, etc. But we can use R to do exactly that. Let us work with a subset containing

only three variables:

EU sub s e t <− s e l e c t (EU2 , count ry , pop18 , a c c e s s)

It would be lovely if the command for ordering data would be called order(), but it is

called arrange()3. Let’s order countries by ascending population in a new data frame called

eu_order:

eu o r d e r <− a r r ange (EU subse t , pop18)

We can now display the first 10 rows with the following command:
eu o r d e r [1 : 1 0 ,]

A t i b b l e : 10 x 3

count r y pop18 a c c e s s

<f c t> <dbl> <dbl>

1 Malta 475701 2004

2 Luxembourg 602005 1951

3 Cyprus 864236 2004

4 Es t on i a 1319133 2004

5 La t v i a 1934379 2004

6 S l o v e n i a 2066880 2004

7 L i t h u a n i a 2808901 2004

8 Croa t i a 4105493 2013

9 I r e l a n d 4838259 1973

10 S l o v a k i a 5443120 2004

The content in the brackets refers to the rows (before the comma), and to the columns (after the

comma). As we only want certain rows and displaying all variables, I have left the space after the

comma blank.

We can do the same thing in descending order by calling:

eu o r d e r <− a r r ange (EU subse t , desc (pop18))

eu o r d e r [1 : 1 0 ,]

A t i b b l e : 10 x 3

count r y pop18 a c c e s s

<f c t> <dbl> <dbl>

1 Germany 82850000 1951

2 France 67221943 1951

3 Uni ted Kingdom 66238007 1973

4 I t a l y 60483973 1951

5 Spa in 46659302 1986

6 Poland 37976687 2004

7 Romania 19523621 2007

8 Ne the r l and s 17181084 1951

3There is a command called order(), but it is not part of the tidyverse, and as this package is steadily
on the rise in coding, I am only showing you this here.

Page 15 of 18

9 Belgium 11413058 1951

10 Greece 10738868 1981

A neat feature of R is that it allows us to order observations by more than one variable. So for

example, we could order them by ascending accession wave first, and then by ascending population

in 2018 as follows:

eu o r d e r <− a r r ange (EU subse t , acce s s , pop18)

eu o r d e r [1 : 1 0 ,]

A t i b b l e : 10 x 3

count r y pop18 a c c e s s

<f c t> <dbl> <dbl>

1 Luxembourg 602005 1951

2 Belgium 11413058 1951

3 Ne the r l and s 17181084 1951

4 I t a l y 60483973 1951

5 France 67221943 1951

6 Germany 82850000 1951

7 I r e l a n d 4838259 1973

8 Denmark 5781190 1973

9 Uni ted Kingdom 66238007 1973

10 Greece 10738868 1981

Page 16 of 18

13 | Grouping Data

Looking at the last example, a question that might spring up is in which accession wave the

joining countries brought the largest population increase on average to the EU. We can calculate

summary statistics for a particular group by, well, grouping them. The first step is to group data

into rows with the same value:

eu a c c e s s <− group by (EU subse t , a c c e s s)

By the way: whenever you have grouped anything, and finished analysing data in this grouped

version it is essential that you ungroup the data afterwards, so that you don’t unintentionally keep

using the groups:

ungroup (EU sub s e t)

A t i b b l e : 28 x 3

count r y pop18 a c c e s s

<f c t> <dbl> <dbl>

1 Belgium 11413058 1951

2 Bu l g a r i a 7050034 2007

3 Czech ia 10610055 2004

4 Denmark 5781190 1973

5 Germany 82850000 1951

6 Es ton i a 1319133 2004

7 I r e l a n d 4838259 1973

8 Greece 10738868 1981

9 Spa in 46659302 1986

10 France 67221943 1951

i 18 more rows

But let’s calculate the average population size per accession wave in an elegant command which

combines multiple steps by using pipes:
EU sub s e t %>%

group by (a c c e s s) %>%

summarise (avg = mean (pop18)) −> eu popacce s s

eu popacce s s

A t i b b l e : 8 x 2

ac c e s s avg

<dbl> <dbl>

1 1951 39958677.

2 1973 25619152

3 1981 10738868

4 1986 28475164.

5 1995 8151880.

6 2004 7327746.

7 2007 13286828.

8 2013 4105493

You now see a new variable called avg which contains the average population increase for each

wave. In which wave did the joining countries have the largest population on average?

Page 17 of 18

14 | Combining Ordering and Grouping Data

The question was easy to answer here, as we only have a few accession waves. It starts to get

unwieldy though, the more groups we have, but we can let R do the job by combining first

grouping, and then ordering. So we take the grouped data frame eu_popaccess and order it

by descending avg:

eu popacce s s o r d e r <− a r r ange (eu popaccess , desc (avg))

eu popacce s s o r d e r

A t i b b l e : 8 x 2

ac c e s s avg

<dbl> <dbl>

1 1951 39958677.

2 1986 28475164.

3 1973 25619152

4 2007 13286828.

5 1981 10738868

6 1995 8151880.

7 2004 7327746.

8 2013 4105493

15 | Saving

Please now save this Rscript into the same folder (working directory) as the raw data. When R

asks before closing, there is no need to save the workspace or the data, as running the RScript

on the raw data will bring you precisely to where you left off.

16 | Next Week

For week 7, please finish working through this worksheet. Read the required literature for week 7.

Work thoroughly through chapters 7 and 8 of the Fogarty book to make sure you are familiar

with all the relevant commands to produce descriptive statistics and graphs with R.

References

European Comission. (n.d.). Eurostat – Your Key to European Statistics. available online at

https://ec.europa.eu/eurostat/data/database.

King, G. (1995). Replication, replication. PS: Political Science and Politics, 28(3), 541-559.

Page 18 of 18

https://ec.europa.eu/eurostat/data/database

	 & RStudio – Installation
	 - Getting Started
	
	First Steps in
	The Working Directory
	 Packages
	Opening your Data Set
	Viewing the Data
	Variable Types in
	Nominal Variables
	Ordinal Variables

	Binary Dummy
	Sub-Setting Data
	By Variable
	By Observation
	Keep if a variable has a certain value, e.g. `pop18' larger than 10,000,000

	Ordering Data
	Grouping Data
	Combining Ordering and Grouping Data
	Saving
	Next Week

